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MISALIGNMENT DETECTION ON LINEAR FEED AXIS WITH FFT AND 

STATISTICAL ANALYSIS USING MOTOR CURRENT 

The linear feed axes are critical subsystems in many production machines and have important responsibilities such 

as transporting workpieces and tools in the process. Therefore, the component’s working condition is crucial for 

the production of high-quality products. Because these systems gradually deteriorate, it is necessary to detect these 

changes and occurring faults with condition monitoring systems. In this study, the motor current of feed axes is 

monitored for axis misalignment that occurs during or after assembly. We conduct diagnosis with Fast Fourier 

Transform (FFT) and statistical methods in order to differentiate different misalignment scenarios and operating 

constraints of the feed axis. Different states are achieved by simulating left and right axis misalignment and 

operating the table at different speeds and strokes. 

1. INTRODUCTION 

One of the most important parts of Industry 4.0 is the acceleration of the transformation 

into unmanned factories by monitoring the machines remotely. A key enabler for this is 

suitable and robust condition monitoring (CM) systems, that act on the real-time data  

of machines [1–3]. These CM systems require a large number of sensors. Generally, fault 

detection and monitoring are performed by using acceleration sensors and vibration analysis 

[4], resulting in an additional cost for the machinery. In addition, these sensors are affected 

by environmental conditions and noise. Also, there are many parts of the machines that need 

to be monitored. This makes machine monitoring complex. This needs to be simplified. It is 

important to find many problems by monitoring only one piece of data on the machine. Using 

already available data sources of the machine can save expenses and installation efforts. 

For this reason, in recent years, research and attempts have been made to use the motor 

current data of variable frequency drives (VFD) to diagnose machine faults. This method has 

many advantages compared with vibration, sound, acoustics, thermal, and other monitoring 

methods. Many machines have current monitoring for control and protection already installed, 

ensuring this monitoring technology is available on a vast number of machines.  
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The purpose of this article is to investigate whether it is possible to diagnose some faults 

in the machines by using the sensorless motor current data with the help of PLC. In general, 

FFT analysis is used to correlate vibration, current, sound, and acoustic signal characteristics 

in signal processing. Feature extraction is defined as the process of estimating some measures 

which will express the signal. One of the simple and fast solutions in feature extraction is 

statistical methods. It gives good results on uncomplicated data [5–6]. 

Motor current-based diagnosis has become a highly accurate and cost-effective 

technology. A lot of research has been carried out on motor current-based fault diagnosis, 

most of which is aimed at finding faults in the mechanical components of the motor. Motor 

internal load variations and problems (winding failures, bearing, stator, rotor failures, faults, 

etc.) and related mechanical component problems are contemplated. In addition, a small 

number of study has been made to detect problems in machines and other components using 

motor current data. Some of them are fault diagnosis studies of bearings [7], gears [8], linear 

shafts [9], misalignments and unbalances [10], oil whips [11], pumps [12], robots [13], and 

wind turbines [14].  

Few works have been done based on the current signal for the diagnosis of linear axis 

misalignment. Putz et al. presented a condition monitoring system using Choi-Williams 

distribution [15]. Yuqing Zhou et al. established a mathematical model between motor current 

and machine faults [16]. In another study, Vogl et al. used data from the multi-sensor-based 

method, inclinometers, accelerometers, and velocity gyroscopes to find changes in linear and 

angular errors due to axis degradation. They compared this developed system with the laser 

method and the performance of this system is almost the same. No signal processing or 

diagnostic detection was used [17]. Reuß [18] modeled and experimentally compared  

the wear on linear axes and investigated the motor current. Wear on bearings and ball screws 

has been studied. Signal processing and intelligent fault detection algorithm were not used in 

this study. In general, frequency-based and time-frequency-based signal processing methods 

are used in studies. Using both domains enables the search for time-dependent and frequency-

dependent faults alike. 

In addition to these advantages, there are some disadvantages. Current signals contain 

fundamental and harmonic components, as well as electrical noise. These issues have to be 

addressed in order to efficiently extract defect-related features from the signal. Still, the fact 

that a new sensor is not needed for the monitoring process makes current-based machine 

monitoring attractive [3]. In the current state of the art, few studies are focusing on faults  

of linear feed axes. Hence, it is the aim of this study to investigate the potential of motor 

current analysis for fault detection on the linear feed axis. In this study, it was investigated 

whether it is possible to diagnose axial misalignment in linear feeding axes by using the motor 

current of the machines by FFT and Statistical methods. 

2. THEORETICAL BACKGROUND 

2.1. FAST FOURIER TRANSFORM (FFT) 

Some signals in the time domain are not easy to find, but the characteristics after 

transforming to the frequency domain are easy to see [19]. For this, we use the frequency 
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analysis method. We can convert the signal from the time domain to the frequency domain 

through the Fourier transform. In order to use computers to perform Fourier transform in 

fields such as scientific computing and digital signal processing. The function, that is,  

the discrete Fourier transform, needs to be discretized. This algorithm can significantly reduce 

the number of multiplications required by the computer to calculate the discrete Fourier 

transform. In particular, the more the number of sampling points N to be transformed,  

the more significant the savings in calculating the FFT algorithm. In Fig. 1, the horizontal 

axis of the first graph is the time, vertical is the amplitude. The second graph has amplitude 

on the vertical axis and frequency on the horizontal axis.  

2.2. STATISTICAL METHODS 

Mean: The mean represents the DC component in the signal. 

𝜇 =
1

𝑁
∑ 𝑥𝑖
𝑁−1
𝑖=0   (1) 

Root mean square: The signal is squared and then averaged to represent the average 

signal power. The average power of the signal is equal to the DC power of the signal plus 

the AC power of the signal. 

𝑟𝑚𝑠 = √
1

𝑁
∑ 𝑥𝑖

2𝑁−1
𝑖=0   (2) 

Skewness can reflect the symmetry of the distribution. 

𝐾3 =
𝐸[(𝑋−𝜇)3]

𝜎3
  (3) 

Kurtosis reflects the sharpness of the image. 

𝐾4 =
𝐸[(𝑋−𝜇)4]

𝜎4
  (4) 

Wavefactor is: 

√
1
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1

𝑁
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  (5) 

The crest factor is the ratio of the peak value of a signal to the effective value (RMS) 

and represents how extreme the peak value is in the waveform. 

max(𝑥𝑖)

√
1

𝑁
∑ 𝑥𝑖

2𝑁−1
𝑖=0

  (6) 

3. EXPERIMENT SETUP 

For this study, we used an experimental setup at the institutes’ laboratory consisting  

of a feed drive system with a ball screw. On this experimental setup, different axial 
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misalignment problems can be simulated and motor current values of the VFD can be 

monitored at different speeds and strokes. The experimental setup consists of a ball screw 

mechanism, table, a fixed and loose pillow block, a workbench, a ball guide rail, the nut 

bracket, the linear encoder, the coupling, and a servo motor with a controller. The servo motor 

is from Beckhoff and the control of the test rig is realized with a Twincat PLC that provides 

the logic and the data acquisition capabilities. Data were collected with a sampling rate  

of 100. The reason for this low rate is the low sampling rate of the PLC. The signal processing 

is executed in Python. The experimental setup is shown in Fig. 1. In addition, the technical 

drawing of the experimental set is shown in Fig. 2. 

 

Fig. 1. Experimental setup 

 

Fig. 2. Technical drawing of the experimental setup 
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The axial misalignment on the right side should normally give the same data as the left 

side. However, it has been shown that it is possible to detect misalignment in more than one 

pillow block. There is a right misalignment on the 1st pillow block caused by the assembly. 

In the second pillow block, misalignment can occur at different levels. The assembly 

misalignment of the 1st pillow block in the experiment set and the simulated misalignment  

of the 2nd pillow block is shown in Fig. 3. In this study, different stroke experiments were 

carried out at different speeds. In addition, different levels of axial misalignment were tested 

for right and left axial misalignment. Each experiment was repeated 25 times for the 

diagnostic algorithms to be used in the future. It was observed that all of the repetitions were 

similar. In this study, 0.5 and 1 mm axial misalignment are included. The velocity values  

of 100 and 200 mm/s were used by keeping the stroke value constant. 

 

Fig. 3. Explanation of axial misalignment in the experimental set 

The normal state left misalignment, right misalignment states are simulated in the linear 

feeding axis. After trying many different strokes, a 100 mm stroke was chosen depending on 

the sampling rate of the PLC. Experiments were made at speeds of 100 and 200 mm/s. 

Experiments were carried out at 0.5 and 1 mm levels for left and right axis misalignment. 

These axial misalignments are simulated with the number 2 pillow block. In addition, there is 

a permanent right axis misalignment in the number 1 pillow block due to assembly. Each 

experiment was repeated 25 times. The experiment plan is given in Table 1.  

Table 1. Experiment plan 

Stroke Speed Misalignment situation Repeat times 

100 mm 100 mm/s Normal condition 25 

  Left misalignment 0.5 mm 25 

  Left misalignment 1 mm 25 

  Right misalignment 0.5 mm 25 

  Right misalignment 1 mm 25 

 200 mm/s Normal condition 25 

  Left misalignment 0.5 mm 25 

  Left misalignment 1 mm 25 

  Right misalignment 0.5 mm 25 

  Right misalignment 1 mm 25 



36 M. Demetgül et al./Journal of Machine Engineering, 2022, Vol. 22, No. 2, 31–42  

 

4. RESULT 

The time variation of the motor current signals obtained in different situations is 

investigated. When the comparison is made in Fig. 4. It can be seen from the signals that the 

amplitude values increase when an axial misalignment was applied. Signal processing is done 

with an FFT to convert from time-domain signals to frequency domain signals and analyze 

the differences. The stroke of this experiment is 100 mm (from absolute position 400 mm to 

500 mm) and has a table speed of 100 mm/s (600 rpm). The unit given as rpm is the rotational 

speed of the motor that moves the table. In the axis misalignment problem, there is an increase 

in the second and third peak amplitude values in the FFT. The stroke frequency of the table 

and its reflections come out at different points due to the sampling rate of the PLC, the table 

waiting at the start and endpoints.  

Due to the friction effect between the axis and the table, the values related to the friction 

increase as the left axis misalignment increases in the 2nd pillow block in the FFT and 

Statistical method. Normally, the same trend should be in the right axis misalignment. Since 

there is a right axis misalignment in the 1st pillow block, which is fixed in our experimental 

set, the values decrease at the beginning when the 2nd pillow block has a right axis 

misalignment, and then increase again after reaching a certain value. If there was a fixed left 

axis misalignment in the 1st pillow block, the values would decrease as the left axis 

misalignment increased in the 2nd pillow block, and then increase again after a certain value. 

If the 1st bearing had been placed properly, the values would have increased in the right and 

left axis misalignments.  

 

Fig. 4. The current value of servomotor (Table speed:100 mm/s, Stroke:100mm) 

The current values transmitted from the FFT are shown in Fig. 5. The x-axis in the figure 

represents the frequency, and the y-axis represents the corresponding amplitude. The plot 

shows that the value of the amplitude increases significantly for different axis misalignments. 
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Fig. 5. The current values in frequency-domain (Table speed:100 mm/s, Stroke:100mm) 

Also, the amplitude in the frequency domain increases with axial misalignment. Several 

experiments were conducted to confirm, whether this phenomenon is reproducible and the 

same conclusion was reached. Figure 6 shows different speeds in the same stroke. The table 

moves at 200 mm/s. If the change in signals in the time domain is compared, although the 

trend of the current signal is the same, the amplitude value changes. It can be seen more 

clearly when analyzed in the frequency domain with the FFT in Fig. 7. As seen in the figure, 

there is no change in frequency, but the amplitude value changes depending on the axial 

misalignment. The amplitude value increases in the left axis misalignment and decreases in 

the right axis misalignment. Although the table speed has been doubled, the main frequency 

and reflections have increased from 0.9 to 1.1. This is because the table waits at the start and 

endpoints and the data sampling is low in the PLC. Therefore, the frequency change does not 

increase proportionally. However, the axis misalignment problem can be clearly identified 

from here. 

 

Fig. 6. The current value of servomotor (Table speed:200 mm/s, Stroke:100 mm) 
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Fig. 7. The current values in frequency-domain(Table speed:200 mm/s, Stroke:100 mm) 

As a result of different experiments, it was seen that left side axis misalignment could 

be detected at different speeds and the amplitude-frequency changed. in case of axial 

misalignment in the right direction, the table is fixed with two pillow blocks of bearing. axis 

misalignment is made from the second pillow blocks of bearing where the end stroke is.  

the bed at the beginning is fixed. during assembly, there is a right axial misalignment on this 

pillow block. when axial misalignment is simulated to the right, the gap gets smaller up to  

a point and therefore the amplitude value decreases. then it goes up again. when 0.5 mm axial 

misalignment is given, the amplitude value gets smaller because the gap gets smaller, then 

when 1mm was applied, the gap value starts to grow as it gets larger again. with this method, 

it is possible to detect more than one axis misalignment. this change is shown in Figs. 8–11. 

 
Fig. 8. The current value of servomotor (Table speed:100 mm/s, Stroke:100 mm) 
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Fig. 9. The current values in frequency-domain (Table speed:100 mm/s, Stroke:100 mm). 

 

Fig. 10. The current value of servomotor (Table speed:200 mm/s, Stroke:100 mm) 

 
Fig. 11. The current values in frequency-domain (Table speed:200 mm/s,Stroke:100 mm) 



40 M. Demetgül et al./Journal of Machine Engineering, 2022, Vol. 22, No. 2, 31–42  

 

 

Fig. 12. Statistical results at 100 mm/s and 100 mm stroke 

When the results are analyzed statistically, mean and root-mean-square values increase 

as the left axis misalignment gets larger. Other statistical methods do not give a significant 

result. In the right axis misalignment, the values decrease at 0.5 mm and increase again when 

it is 1 mm. Statistical results are shown in Figs. 12 and 13. 

 
Fig. 13. Statistical results at 200 mm/s and 100 mm stroke 

5. CONCLUSION AND FUTURE WORKS 

In the study, it is seen that as the axial misalignment increases, the FFT amplitude value 

and statistical results increase in the left axis misalignment. It was observed that the right axis 

misalignment decreased up to 0.5 and then increased. It was concluded that the reason for this 

was due to the assembly error and more than one axis misalignment could be detected. From 

the results, it is seen that it is possible to monitor and diagnose axial misalignment errors  

of linear feed axes by using the servo motor current data obtained from PLCs, and research 
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on this subject should continue. But when we apply this to real systems, the time-dependent 

signal changes depending on the environmental conditions. This causes incorrect fault 

diagnosis. The FFT-based approach is less affected at this point. In this system, frequency-

based and time-based signal processing techniques should be used together in fault diagnosis 

using the frequency and amplitude values of the peaks in FFT and statistical results to find 

the problem by comparing the differences between these values. Since each machine has  

a motor and they are controlled by a PLC or NC, there is no need to install additional sensors, 

decreasing time and money spent on the machinery. With this approach, current diagnostics 

and monitoring of feed axes can become more available in the industry. In addition, It is 

possible to make automatic fault diagnoses by classifying the results obtained in this study 

with different machine learning methods in the future [20–21]. In addition to these, In our 

studies, it is seen that weight changes do not affect the results, but force changes do. In 

addition, vertical axis misalignments will also be investigated. These results will be shared in 

future studies. 

The effect of force change and weight change on motor current data will be discussed 

in later studies. The behavior of the motor current against the force and weight change at 

different levels will be examined. Accordingly, the deep learning algorithm will be trained. 

In addition to these, the most ideal speed stroke values will be determined for the fault 

diagnosis of the table. 

As a result, automatic detection of equipment malfunctions is possible using motor 

current and it is possible to use this sensorless method in diagnosing problems of other 

machine parts. 
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